C 82976

(**Pages : 4**)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2915

(CUCBCSS-UG)

Core Course—Mathematics

MAT 2B 02—CALCULUS

Time : Three Hours

Maximum : 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

1. Evaluate $\lim_{x\to\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

2. Find the intervals in which the function f is increasing given $f^{1}(x) = x^{-1/3} (x + 3)$.

- 3. State the Mean Value Theorem.
- 4. What are the critical points of f given f'(x) = (x-1)(x+2)(x-3).
- 5. Find dy if $y = \sin 3x$.
- 6. Evaluate $\int_{0}^{4} \left(3x \frac{x^{3}}{4}\right) dx.$
- 7. The length of the longest subinterval of a partition is called its ————.
- 8. Write the sums without sigma notation and then evaluate the sum $\sum_{k=1}^{2} \frac{6k}{k+1}$.

9. If
$$\int_{0}^{3} f(x) dx = 5$$
 find $\int_{0}^{3} \sqrt{2} f(x) dx$.

- 10. A function with a continuous first derivative is said to be ———.
- 11. The radius r of a circle increases from $r_0 = 10$ m to 10.1 m. Estimate the increase in the circle's area A by calculating dA.
- 12. If f is smooth in [a, b] then the length of the curve y = f(x) from a to b is L = -----.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find the work done by a force of $F(x) = \frac{1}{x^2} N$ along the x-axis from x = 1 to x = 10 m.
- 14. Find the absolute maximum and minimum values of $f(x) = 4 x^2$, $-3 \le x \le 1$.
- 15. Evaluate $\int_{0}^{2\pi} \frac{\cos z}{\sqrt{4+3\sin z}} dz.$
- 16. Find the volume of the solid generated by revolving the region bounded by the lines y = 0, x = and the curve $y = x^3$.

17. Evaluate
$$\frac{d}{dx} \int_{0}^{\sqrt{x}} \cos t \, dt$$
.

18. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_{a}^{b} f(x) dx = 0$ then f(x) = 0 at least once in [a, b].

19. Evaluate
$$\sum_{k=1}^{6} (3-k^2)$$
.

- 20. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 3.
- 21. Find the average value of $f(x) = x^2 1$ on $[0, \sqrt{3}]$.
- 22. About how accurately should we measure the radius r of a sphere to calculate the surface area $S = 4\pi r^2$ within 1% of its true value.
- 23. Find the length of the curve $x = \sin y$, $0 \le y \le \pi$.
- 24. Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.

 $(9 \times 2 = 18 \text{ marks})$

Cs

Part C

3

Answer any **six** questions. Each question carries 5 marks.

- 25. Find the length of the curve $y = \tan x$, $\frac{-\pi}{3} \le x \le 0$.
- 26. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
 - 27. Find the area of the region enclosed by the curve $y = 2x x^2$ and the line y = -3.
 - 28. Find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$,
 - $0 \le x \le 4$ about the y-axis.
 - 29. Find the asymptotes of the curve $y = \frac{x^2 3}{2x 4}$.
 - 30. Express the solution of the following initial value problem as an integral :

Differential equation : $\frac{dy}{dx} = \tan x$.

Initial condition : y(1) = 5.

- 31. Find the intervals on which the function $g(t) = -t^2 3t + 3$ is increasing and decreasing.
- 32. Find the local maxima and local minima of $g(x) = -x^3 + 12x + 5$, $-3 \le x \le 3$.

33. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\frac{\pi}{4}$.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions. Each question carries 10 marks.

- 34. Show that the centre of mass of a straight, thin strip or rod of constant density has half way between its two ends.
- 35. A rectangle is to be inscribed in a semi-circle of radius 2. What is the largest area then rectangle can have and what are its dimensions ?
- 36. Find the area of the region between the curve $y = 4 x^2$, $0 \le x \le 3$ and the x-axis.

(Pages : 4)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2016

(CUCBCSS-UG)

Core Course—Mathematics

MAT 2B 02-CALCULUS

Time : Three Hours

C 829

alf way

angle

S)

5597

Maximum : 80 Marks

Part A

Answer **all** the twelve questions. Each question carries 1 mark.

1. Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$.

2. Evaluate $\int_{-\pi}^{\frac{\pi}{3}} 2\sec^2 x \, dx.$

3. The length of the largest sub-interval of a partition is called its ------

- 4. Evaluate $\lim_{x\to -\infty} \frac{2x^2-3}{7x+4}.$
- 5. What are the critical points of f given $f^1(x) = (x-1)^2(x+2)$.
- 6. State the Mean Value Theorem.
- 7. Find dy if $y = x^5 + 37x$.
- 8. Write the sums without sigma notation and then evaluate the sum $\sum_{k=1}^{3} (-1)^{k+1} \sin \frac{\pi}{k}$.

9. Suppose that
$$\int_{2}^{3} f(x) dx = 4$$
. Find $\int_{2}^{3} -f(x) dx$.

10. Find the intervals in which the function f is increasing given $f^{1}(x) = (x-1)^{2}(x+2)$.

11. Evaluate $\int_{1}^{32} x^{-6/5} dx$.

12. Evaluate $\lim_{x\to\infty}\frac{2x+3}{5x+7}$.

Part B

Answer any **nine** questions. Each question carries 2 marks.

- 13. Suppose that f is continuous and that $\int_{0}^{3} f(z) dz = 3 \text{ and } \int_{0}^{4} f(z) dz = 7. \text{ Find } \int_{3}^{4} f(z) dz$
- 14. Find the volume of the solid generated by revolving the region bounded by the line y = 0 and the 25curve $y = x - x^2$.

15. Find the average value of
$$f(x) = -3x^2 - 1$$
 on $[0, 1]$.

16. Evaluate
$$\int_{-\frac{\pi}{4}}^{0} \operatorname{trn} x \sec^2 x \, dx.$$

17. Evaluate
$$\frac{d}{dt} \int_{0}^{t} \sqrt{u} \, du$$
.

18. Find the absolute maximum and minimum values of $f(x) = -x - 4, -4 \le x \le 1$.

19. Evaluate
$$\sum_{k=1}^{10} k^2$$
.

20. Find
$$\frac{dy}{dx}$$
 if $y = \int_{1}^{x^2} \cos t \, dt$.

Sh0

C

Th A

F

 $(12 \times 1 = 12 \text{ mark})$

4.

Show that the value of $\int_{0}^{1} \sqrt{1 + \cos x} \, dx$ cannot possibly be 2.

The radius r of a circle increases from $r_0 = 10 m$ to 10.1 m. Estimate the increase in the circle's area A by calculating dA.

Find the work done by a force of F (x) = $\frac{1}{x^2}$ N along the x-axis is from x = 1 m to x = 10 m.

4. Find the function f(x) whose derivative is series and whose graph passes through the point (0, 2). $(9 \times 2 = 18 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 5 marks.

- 25. Find the value of local maxima and minima of $g(x) = x^2 4$, $-2 \le x \le 2$ and say where they are assumed.
 - 26. Find the surface area of the solid generated by revolving $y = \tan x$, $0 \le x \le \frac{\pi}{4}$ about the x axis.
 - 27. Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
 - 28. Find the intervals on which the function $f(x) = 3x^2 4x^3$ is increasing and decreasing.
 - 29. Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
 - 30. Find the asymptotes of the curve $y = \frac{x^2 3}{2x 4}$.
 - 31. Find the length of the curve $x = \sin y, 0 \le y \le \pi$.
 - 32. Express the solution of the following initial value problem as an integral :

Differential equation	:	$\frac{dy}{dx} = \tan x$
Initial condition	· ·	y(1) = 5

About how accurately should we measure the radius r of a sphere to calculate the surface ar_{0q} 33. $s = 4 \pi r^2$ within 1 % of its true value.

(6 × 5 = 30 marks)

Part D

Answer any two questions. Each question carries 10 marks.

Find the area of the surface generated by revolving the curve $y = x^3$, $0 \le x \le \frac{1}{2}$ about the *x*-axis. 34.

Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{\frac{3}{2}} - 1, 0 \le x \le 1$. 35.

Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$. 36.

(Pages : 4)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 201/7

(CUCBCSS-UG)

Core Course-Mathematics

MAT 2B 02-CALCULUS

Time : Three Hours

4738

surface

Maximum : 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

1. Find dy if $y = \frac{2x}{1+x^2}$.

Repeat

2. A function with a continuous first derivative is said to be ———

3. Suppose that
$$\int_{1}^{3} f(x) dx = 6$$
. Find $\int_{1}^{3} f(u) du$.

4. If f is smooth in [a, b] then the length of the curve y = f(x) from a to b is L = ----.

- 5. Find the intervals in which the function f is increasing given f'(x) = x(x-1).
- 6. The radius r of a circle increases from $r_0 = 10m$ to 10.1m. Estimate the increase in the circle's area A by calculating dA.

7. Evaluate
$$\int_{0}^{1} \left(x^{2} + \sqrt{x}\right) dx.$$

8. Write the sum without sigma notation and then evaluate the sum $\sum_{k=1}^{4} \cos k \pi$.

- 9. State Rolle's Theorem.
- 10. What are the critical points of f given $f'(x) = x^{-\frac{1}{3}}(x+2)$.

Turn over

11. Evaluate
$$\lim_{x \to \infty} \frac{\sin 2x}{x}$$

12. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **nine** questions. Each question carries 2 marks.

13. Find the absolute maximum and minimum values of $f(x) = -\frac{1}{x}, -2 \le x \le -1$.

- 14. Evaluate $\int_{0}^{\pi/4} \tan x \sec^2 x \, dx$.
- 15. Find the volume of the solid generated by revolving the region bounded by the line y = 0 and the curve $y = x x^2$.
- 16. Suppose that f is continuous and that $\int_{0}^{3} f(x) dx = 3$ and $\int_{0}^{4} f(x) dx = 7$. Find $\int_{4}^{3} f(x) dx$.
- 17. Find the function f(x) whose derivative is sin x and whose graph passes through the point (0, 2).
- 18. Find the average value of $f(x) = x^2 1$ on $(0, \sqrt{3})$.

19. Evaluate
$$\sum_{k=1}^{7} (-2k)$$
.

20. Find
$$\frac{dy}{dx}$$
 if $y = \int_{1}^{x^3} \cos t \, dt$.

1. Show that if f is continuous on $[a, b] a \neq b$ and if $\int_{a}^{b} f(x) dx = 0$ then f(x) = 0 at least once in [a, b].

22. Evaluate
$$\frac{d}{dt} \int_{0}^{t'} \sqrt{u} \, du$$
.

23. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\frac{\pi}{4}$.

24. Express the solution of the following initial value problem as an integral :

Differential equation : $\frac{dy}{dx} = \tan x$ Initial condition : y(1) = 5.

 $(9 \times 2 = 18 \text{ marks})$

Part C

Answer any six questions. Each question carries 5 marks.

- 25. Find the lateral surface area generated by revolving xy = 1, $1 \le y \le 2$ about the y-axis.
- 26. About how accurately should we measure the radius r of a sphere to calculate the surface area $S = 4\pi r^2$ within 1% of its true value.

27. Evaluate the length of the curve $x = \sqrt{1 - y^2}, -\frac{1}{2} \le y \le \frac{1}{2}$.

28. Find the volume of the solid generated by revolving the region between the y-axis and the cur

$$x = \frac{2}{y}, 1 \le y \le 4$$
 about the y-axis.

29. Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.

Turn

C 24, 00 30. Find the intervals on which the function $h(x) = -x^3 + 2x^2$ is increasing and decreasing.

- Find the length of the curve $x = \sin y, 0 \le y \le \pi$. 31.
- Find the area of the region enclosed by the curve $y = x^2 2$ and the line y = 2. 32.
- Find the value of local maxima and minima of $f(x) = x^2 4, -2 \le x \le 2^4$ and 2ay where they are 33. assumed.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions. Each question carries 10 marks.

- Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis. 34.
- State and prove the Fundamental Theorem of calculus. 35.
- 36. Find the centre of mass of a thin plate of constant density δ covering the region bounded by the parabola $y = 4 - x^2$ and below by the *x*-axis.

43194

(Pages: 3)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Mathematics

MAT 2B 02-CALCULUS

Time : Three Hours

Maximum : 80 Marks

Part A (Objective Type)

Answer all **twelve** questions. Each question carries 1 mark.

1. Absolute maximum of the function $y = x^2$ on (0, 2] is

2. Find dy if $y = x^5 + 37x$.

3. Find the interval in which the function $y = x^3$ is concave up.

4. Suppose that $\int_{1}^{4} f(x) dx = -2$, evaluate $\int_{4}^{1} f(x) dx$.

5. A partition's longest subinterval is called ———.

6. Find $\lim_{x \to -\infty} \frac{\pi \sqrt{3}}{x^2}$.

7. Express the limit of Riemann sums $\lim_{\|p\| \to 0} \sum_{k=1}^{n} (3c_k^2 - 2c_k + 5) \Delta x_k$ as an integral if P denotes a

partition of the interval [-1, 3].

- 8. Find the norm of the partition [0, 1.2, 1.5, 2.3, 2.6, 3].
- 9. Define critical point of a function.
- 10. Evaluate $\int 5\sec x \tan x \, dx$.
- 11. State Rolls' Theorem.
- 12. Define point of inflection.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

13. Evaluate $\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

- 14. Find the absolute extrema of $h(x) = x^{2/3}$ on [-2, 3].
- 15. Find the interval in which $f(t) = -t^2 3t + 3$ is increasing and decreasing.
- 16. Find dy/dx if $y = \int_{1}^{x^2} \cos t dt$.
- 17. Suppose $\int_{1}^{x} f(t) dt = x^{2} 2x + 1$. Find f(x).
- 18. Evaluate $\sum_{k=1}^{4} (k^2 3k)$.

19. Give an example of a function with no Riemann integral. Explain.

20. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the point (0, 2).

21. Use Max-Min inequality to find upper and lower bounds for the value of $\int_0^1 \frac{1}{1+x^2} dx$.

- 22. Show that the value of $\int_0^1 \sqrt{1 + \cos x \, dx}$ cannot possibly be 2.
- 23. Find the linearization of $f(x) = \cos x$ at $x = \pi/2$.

249

24. Suppose that F(x) is an antiderivative of $f(x) = \frac{\sin x}{x}$, x > 0. Express $\int_{1}^{3} \frac{\sin 2x}{x} dx$ in terms of F.

 $(9 \times 2 = 18 \text{ marks})$

end the lineariza

end the area of

od the asyn

rectangle

on tha

dth

about

31. 5

Part C (Short Essay Type)

Answer any **six** questions. Each question carries 5 marks.

Find the linearization of $f(x) = 2 - \int_2^{x+1} \frac{9}{1+t} dt$ at x = 1.

Find the area of the region between the curve $y = x^2$ and the x-axis on the interval [0, b].

- 27. Find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.
- 28. A rectangle is to be inscribed in a circle of radius 2. What is the largest area the rectangle can have, and what are its dimensions ?
- 29. Show that functions with zero derivatives are constant.
- 30. Find the lateral surface area of the cone generated by revolving the line segment $y = x/2, 0 \le x \le 4$, about the x-axis.
- 31. Show that if f is continuous on $[a, b, a \neq b$, and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in

[a,b].

- 32. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by x-axis and the line y = x - 2.
- 33. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the x-axis. (6 × 5 = 30 marks)

Part D (Essay Questions)

Answer any **two** questions. Each question carries 10 marks.

34. (a) Find the curve through the point (1,1) whose length integral is $L = \int_{1}^{4} \sqrt{1 + \frac{1}{4x}} dx$.

(b) How many such curves are there ?

35. Find the length of the curve $y = (1/3)(x^2 + 2)^{3/2}$ from x = 0 to x = 3.

36. Find the volume of the solid generated by revolving the regions bounded by the curve $x = \sqrt{5y^2}$, x = 0, y = -1, y = 1 about x-axis.